Practical Experience on Addressing the Assessment & Management of Dents

USDOT PHMSA 2018 R&D Forum Baltimore, MD September 11, 2018

Mark Piazza Manager, Pipeline Compliance and R&D

Research Objective

- Improve our understanding of dent fatigue to develop appropriate inspection, response/repair, and P&M technologies, strategies and programs
- Adjust operations to reduce cyclic fatigue on system
- Apply R&D results to evaluate and prioritize dents and deformations that represent a potential for failure

Hazardous Liquids Final Rule

- Liquids industry petitioned to allow for an industry recognized engineering analysis to determine those dents that are non-injurious and require no further investigation
- Engineering analysis accepted for cracks, not dents

notity the appropriate PHMSA Region Director when unable to inspect intrastructure impacted

by extreme weather within 72 hours; 2) PHMSA is allowing a specified engineering critical

assessment (ECA) to extend the repair deadline with regard to SCC and SSWC but not for dents;

- With Final Rule pending, what are options?
- What tools are available for managing shallow dents?

- P-17-1: Work with pipeline trade and standards organizations to modify the pipeline dent acceptance criteria to account for all the factors that lead to pipe failures caused by dents, and promulgate regulations to require the new criteria be incorporated into integrity management programs
- Regulations are not vague
- Support for revised/alternate response criteria
- Addressing the shallow dents that require response
- Resource allocation to true threats improving pipeline safety

Pipeline Inspection & Repairs

- Dent shape parameter (not depth!)
 - Incorporated into pipeline operator ILI specifications
 - Sets a standard for dent/deformation ILI reporting requirements
 - Used in Level 1, 2, 3 analysis

- PRCI MD 4-9 Technical Note
- Develop shape parameter using characteristic lengths measured across the dent profile
- Use calculated shape parameters, pipe grade, and SCADA data to rank shape severity (L1) and /or fatigue severity (L2)
- L3 full FEA; complex shapes

- Dent restraint parameter restrained vs. unrestrained affects fatigue life
 - Restrained longer life
 - Unrestrained reduced life
 - Bottom-side dents have higher restraint potential
 - Previously excavated dents: restrained <u>and</u> unrestrained

Analysis of Restraint Condition

Dent Fatigue Crack Location, Orientation and Surface

Pressure Cycle Management

- # of cycles and magnitude of cycling loading influence dent fatigue failure
- Pressure attenuation discharge vs. suction
- Liquids operations vs natural gas
- Pressure cycling references in regulations
 - Absent in PHMSA Proposed Final Rule (49CFR § 195)
 - Included in PHMSA
 Advisory for natural gas
 lines (ADB 2016-0131)

Full-scale Testing of Dent Sample

Effects of Dent Shape

- Manufacturer
- Date of Install
- Pipe Diameter
- Coating Type
- Product Type
- Distance to Pump Station
- Terrain
- Soil Type
- Moisture Content
- Indenter Cause

- Leak Similarities
 - Shallow Bottom Side Dents
 - High D/t Pipe

NTSB Accident Investigation – Centreville, VA

Fatigue Testing of Uncracked Dent Sample

Effects of Dent Shape

3rd Dent (Fatigue Test)

Un-cracked Dent (Fatigue Test)

Leak Site (failed in-service)

- Fabricated dent 24" indenter, 1.1% deep
- Smooth dent profile
- 90 psi to 540 psi
- Unrestrained dent
- Center of dent axis
- 455k cycles to failure

- In-service, bottom-side dent: 1.6% deep
- Smooth dent profile
- 90 psi to 365psi*
- Previously dug and remediated (2002)
- Restrained & unrestrained
- Near dent peak
- 108k cycles to failure

- In-service, bottom-side dent: 1.6% deep
- Complex shape
- 365 psi max
- Previously dug and remediated (1994)
- Restrained & unrestrained
- Near dent peak
- 12k cycles to failure

Integrating Multiple ILI Tool Runs

- Typical mainline data set
 - 3+ MFL\DEF\INS
 - 1 UT crack tool run
- All data is integrated and odometers generated for all historic tool runs
 - Previous tool runs are reviewed in conjunction with most current tool run
 - Prior dig data is integrated allows for tool validation prior to digging
 - All dents are manually reviewed in raw data (recall DRRPM)

1	ANOMALYID [▼ AF ▼	ENDORC	ODO2015 👻	CRACK201	COMBO201 ORCP	C Altstation -	USWELD	SWEL 💌		JOINTLENG	VENDORNOTES 🔽	PTHPEF -	ENGTI	WIDTH	INTEX -	ERF 🕶 STI	
303979		0	BND 1569	1318103.480	1317752.332	1321965.134	1105597.6	13.6	13.5	12:11	27.1			80.88				
303980		5	B-16142	1318103.590	1317752.442	1321965.244	1105597.71					39.8 D -0.7ø Left 3.7ø Up						
303981		7	AGM	1318106.200	1317755.052	1321967.854	1105600.32	16.344	10.677									
303982	2B-1318111.723-2016-51	16	crack field	1318111.723	1317761	1321973	1105606	21.842	5.121	6:24	26.963	Associated With Dent ID 4901644	8.32451	4.60	2.51	ext		
303983		7	DENT	1318111.872	1317760.724	1321973.526	1105606.15	22.041	4.98	6:00								
303984							1105606.36											
303985		16	dent	1318112.096	1317760.948	1321973.75	1105606	22.215	4.748	6:12	26.963	Associated With Crack Field ID 4901	645	12.03	6.70			
303986		5	D-4579	1318112.153	1317761.005	1321973.807	1105606.06	22.309	4.921			1.1% Dent at 6:00	1.107	14.96				
303987		16	weld	1318116.844	1317765.721	1321978.646	1105611				40.322							

Integrating Multiple ILI Tool Runs

- Reporting thresholds
 - Deformation reporting specifications
 - 1% Deformations
 - False positive challenges <1%
 - Crack reporting specifications
 - Any dent with a crack field reported
 - Limitations with UT tool detection within deformation
 - Continuing to improve process
 - PRCI MD 1-13
 - Crack data is integrated and reviewed for feature proximity to deformations
 - Crack location and orientation now considered
- Continual review and analysis of crack raw data as data becomes available or is refreshed
 - This review is documented and integrated into the DRRPM
 - DRRPM scores are updated

Integrating Multiple ILI Tool Runs

Strong signal ٠

٠

Called crack by • ILI

2016 Excavation

Effects of Dent Shape

Multi peak dents vs single peak

NDE Methods – Dents and Cracks

- Document deformation profile in grid system
 - Minimum grid points
 - Deepest & most prominent locations
- Magnetic Particle dent and 12" surrounding
- Cracks are sized using shear wave or phased array – internal cracks
- If no findings during MP, shear wave or phased array
- 3D scan/profile
 - Compare to ILI SP and RP
- NDE research
 - Multiple NDE vendors sizing cracks, destructive testing for confirmation
 - PRCI MD 1-13

NDE Methods – Dents and Cracks

